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Abstract

In this paper a first order perturbation analysis is carried out on a symmetrically perturbed non-ideal crack for three
kinds of electric boundary conditions, namely permeable, impermeable and conducting crack boundary condition. By
using the extended Stroh formula, the two-domain problems are reduced to standard Riemann—-Hilbert problems, and
the singular integral equations of the internal electric field inside the permeable crack are solved. The stress and electric
intensity factors (SEIFs) are determined to the first order of accuracy. The results indicate that for a symmetrically
perturbed non-ideal crack the electro-mechanical loading at infinity does not affect the first order solution for the mode
I intensity factor for general piezoelectric materials. The energy release rate and the SEIFs are determined by remote
mechanical loads only and the perturbation effect on the SEIFs and energy release rate is small. The electric field
distribution inside crack is constant for the zeroth order solution and quadratic for the first order solution, which is
different from the constant electric field distribution for an ideal permeable crack. The internal electric concentration
near the crack tip caused by the perturbation reveals that the dielectric inside the crack probably breaks down before
the matrix does when the matrix is subjected to a not too high electro-mechanical load at infinity. The SEIFs and the
energy release rate are also given for the non-ideal crack under the impermeable and conducting electric boundary
condition respectively. For all three kinds of electric boundary conditions, the lateral stresses 75, 75 have no contri-
bution to the SEIFs to the first order of accuracy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Owing to their intrinsic electro-elastic interaction, recently piezoceramics are widely used as actuators,
sensors and transducers etc. Flaws, voids and microcracks inevitably exist in the manufacturing process of
materials. When they are subjected to high operating loading or electric voltage, the reliability problem
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arises in application of these materials to engineering devices. Many efforts have been devoted to the
fracture mechanics of piezoelectric materials. Parton (1976) first investigated the fracture problem in pie-
zoelectric materials and in his paper the crack was taken to be a permeable slit, i.e. the electric potential and
normal component of the electric displacement were continuous across the crack surface. Deeg (1980), Pak
(1990, 1992), Suo et al. (1992) addressed the plane and antiplane fracture problems of piezoelectric ma-
terials and obtained a closed form solution of the stress field and the electric displacement near the crack tip
in terms of the impermeable electric boundary condition. Sosa (1991) used complex potential theory to
investigate the elliptical void under the condition of plane deformation. Sosa and Khutoryansky (1996),
Chung and Ting (1996), Gao and Fan (1999) further used an exact electric boundary condition to obtain
the solution of an elliptical void in piezoelectrics. Chung and Ting (1996) also solved the inclusion problem
in a piezoelectric media. Wang and Han (1999) and Gao and Wang (2000) solved an interface crack
problem using the permeable crack boundary condition. Using the extended Stroh formalism and analytical
continuation method, Shen and Kuang (1998) solved crack problems in a bi-piezothermoelastic media. In
these papers the electric boundary condition is not fully identical with practical problems, because in reality
there is a slight opening between two crack faces. McMeeking (1989) modeled the crack as a slender elliptic
flaw with lower permittivity. He found that the approximation degree of the electric boundary condition
depends on the parameter (er/en)(a/b), where €; and €, are the permittivities of the media in the flaw and
the matrix respectively and « and b are the semi-axes of the ellipse (¢ > ). Dunn (1994) pointed out that the
impermeable assumption can lead to significant errors regarding the effects of the electric fields on crack
propagation based on an energy release rate criterion. Hao and Shen (1994) considered the permeability of
air in a crack gap and took the electric boundary condition as Dy = Dy, Dy (uj —u;) = e(¢p~ — ¢*). The
electric displacement inside the crack was first assumed to be a constant, and then they solved the problem
and proved that the assumption is reasonable. Zhang et al. (1998) adopted this assumption in their analysis
for a permeable slender elliptic flaw. McMeeking (1999) employed finite element methods to simulate the
experiment by Park and Sun (1995) for both permeable and impermeable electric boundary conditions. He
also assumed a constant electric displacement field for the dielectric within the crack. However, the present
model gives a non-homogeneous electric field distribution within the crack. Kuang (1979) and Wu (1982,
1994) solved a non-ideal crack problem for an isotropic material. Chen and Hsu (1997) further analyzed a
non-ideal interface crack in an anisotropic media.

In this paper, we solve the problem of an infinite piezoelectric plate with a symmetrically perturbed non-
ideal crack for three kinds of electric boundary conditions i.e. permeable (in Sections 3-6), impermeable
and conducting boundary condition (Section 7). When the perturbation of the crack is small, we define the
upper and lower surfaces of the crack as (Fig. 1) (In this paper notations x; = x, x, = y will be adopted
simultaneously.)

xy=¢eYe(x)) or y=e¥i(x), |u|<a, (1)
where
Y+(X1) — Y_(Xl) = 0

E)

and ¢ is a small parameter, 2a is the crack length. The subscripts “+”” and “—" represent the value on the
upper and lower crack surface respectively. At the ends of a non-ideal crack, we designate (Wu (1994) called
it a regularly perturbed crack)

Yi(£a)—Y (+a)=0,

which ensures that crack tips are still mathematically sharp while the opposing crack faces are not in
contact with each other. Generally, this situation coincides with most cracks in practical brittle materials.
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Fig. 1. The crack configuration and the remote loading condition.

2. Basic equations

In a fixed rectangular coordinate system (x, x,, x3), the constitutive equations for linear piezoelectrics of
the second kind can be written as

UU = ijkluk,l + elijd)A], Di = €jxUk, — Ki/d),l (l.,j7 k7 | = 1’2’ 3)7 (2)

where repeated Latin indices mean summation and a comma stands for partial differentiation. ¢;;, are the
elastic stiffnesses under constant electric field, ey, the piezoelectric stress constants, and «;; the permittivity
under constant strain field. o;;, u;, D;, E;, and ¢ are stress, displacement, electric displacement, electric field
and electric potential respectively. Here we only address general two-dimensional problems in the (x;,x;)-
plane, i.e. all variables are constant along the x;-axis. Following Suo (1993), Chung and Ting (1996) and
Kuang and Ma (2000) the generalized displacement solution can be obtained by considering a linear
combination of four complex analytical functions,

u= {L(;)’} :2ReZaan(za), uy :2ReZan;(z“). (3)

a=1

The uppercase subscript ranges from 1 to 4, the lowercase subscript from 1 to 3. The generalized stress
function, which is the resultant force on an arc, can be represented as,

(D(Z) =2Re Zbafoc(za)» ¢J(Z) =2Re Z bjmfu(za)a (4)

where z, = x; + p,x, and ®;, j = 1,2,3 represents the component of resultant force and @, is the electric
displacement flux on a curve. The eigenvalues p, and the eigenvectors a, can be obtained from the following
equations:

Q+ (R+R")p+Tp*a=0, (5)

where
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Q= QT €11 ’ R = i €21 7 - €2 7
€ —kn €1 —Kn €n —Kn (6)
O =cin, Ri=cua, Ty =con, (&), = eys,
and the eigenvectors b, can be obtained from the following relations,
b, = (RT +psz)aof = _(Q +pocR)az/pow (7)
From Eq. (7), the two equations can be recasted in the standard eigenrelation (Ting, 1996)
N1 N2 a| a
N; NT'[|b| ~?|p|
N, = -T'R", N, =T, N; =RT'RT - Q. (8)
Ting (1996) also shows
* 0 %
00 00
Ns = x 0 x x|’ )
x 0 x %
where * stands for a possible non-zero value. The generalized Barnett-Lothe tensors are
S=i(2AB"-1I), L =-2iBB". (10)
The generalized stresses are as follows:
£ ={ 7} = 001 = 2Re| sl
zZ) = = = c ZO{ s
2 D, 1 2 Jol
(11)
gy

For stable materials eigenvalues cannot be real (Suo et al., 1992; Ting, 1996). Note in this paper that
implicit summation convention is used only for Latin indices, while for Greek indices we write the sum-
mation symbol explicitly.

The electric potential of the isotropic dielectric inside the crack can be expressed as a real part of a
complex analytical function g(z) in z-plane,

¢°(x,y) = g(2) + &(2) = 2Re[g(2)], (12)

where z = x + 1y. The overbar indicates a conjugate value and the superscript c represents the field inside the
crack. Thus we have the electric field and electric displacement inside the crack,

Ej(x,y) = —2Re[¢'(z)],  Dj(x,y) = —2eRelg'(z)],

13
Eg(xhy) = 2Im [g/(z)]7 Dg(x7y> = 2¢Im [g/(Z)], ( )

where ¢ is the permittivity of the dielectric inside the crack.
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3. Perturbation analysis for the permeable non-ideal crack

We consider an infinite piezoelectric media with a non-ideal centered crack, which is traction-free on its
crack faces and subjected to a mechanical loading ¢33, 63}, 635, 67}, 675 and an electric loading D}°, DY at
infinity. By means of perturbation theory, we can expand the complex function f,(z,) in powers of e,

o0

Fle) = Filie) = 3 o) = Falea) + ofal) + (14)

n=0
We direct our focus only to the first order solution so the higher order term will be ignored. We express the
point on the crack face with x,

Z" =x +1ie¥e(x), Z, =x+ep, Y (x), |¥|<a. (15)
Therefore the function f,(z}) can be expanded as follows,
o) & . )
f;tn (Z;) = Z Jfan (Z;) = foi(x) + 8pfoj:(x)fmi(x) + 0(82)’ (16)
n=0 """

where f7(x) stand for values on the crack surfaces at z* = x + ¢p, Y. (x) respectively.
We can expand g(z), g,(z*) in the same manner,

g(z) = go(z) +2g1(2) + O(&%),
2.(z") = gu(x) +ieYi(x)g (x) + O(&?).
The traction free boundary condition, the continuity of the electric displacement in the normal direction at

the boundary and the continuity of electric field in the tangential direction or the continuity of electric
potential at the boundary curve require

2Re Y, bufi(z;) =0,
2Re Y, basfy(z;) = 2eIm[g(z")], (18)
2Re Y, asfy(z;) = 2Re[g(z")].

Hence the boundary condition to the first order of accuracy for ¢, ¢

(17)

! can be expressed respectively as

follows,
2Re Y, bjafyo(x) =0,
2Re Y by, f5(x) = 2¢Im(go(x)], x €L, (19)
2Re Y, as,f5(x) = 2Re[go(x)],

2Re )", by [paYi (xX) 1 (x) —l—fj(x)] 0,
2Re Y, buy [ Y (x) 15 (x) + f5(x)] = 26 Im[iYe (x)gh(x) + &1(x)], x €L, (20)
2Re Y, a [P Y (0)f35 (x) + £7(x)] = 2Re[iY. (x)gy (x) + &1 (x)]-
L is the line in the interval of (—a,a). It is worth noticing that in Eq. (20) only the lateral component of
generalized stresses of the zeroth order, i.e. ZES) in Eq. (11), can affect the first order solution. The remote
stress and electric boundary conditions are

55 = (@)= { 72 | = 2Re[ T i)

Zy—00

00
sz

b (1)

5 = (B = { L} = R[S sl
1

Noticing Egs. (16) and (21) can be rewritten in the following form,

Zy—00
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53 = Re[Slibufu()] T =2Re[Siibundfi)] -
Zy—00 Zy—00 22

0=2Re[ Y0 bufi(@)| . 0=-2Re[Y bupsi(a)]
The single-value condition of displacement requires (Suo et al., 1992; Wang and Han, 1999)

['[Ssouser$narica] <o
[ [Z’W&?T@ - thfgl(x)] =0.

Now the controlling equations for the permeable electric boundary value problem to the first order of
accuracy are complete. In Sections 4 and 5, efforts will be mainly made to solve the boundary problems for
the zeroth order and the first order solution respectively. Section 6 concerns about the energy release rate
for the permeable non-ideal crack.

(23)

4. The solution of the order of &

First we solve the zeroth order solution, viz. the solution for a permeable ideal crack. We rewrite Eq. (19)
in a compact form,

2Re >, byufy(x) = Tho,
{2Re ¥, af3(x) = Releo(w], (24)
where
Tio(x) = {0, 0, 0, 2eImlgo(x)]}. (25)

From the first term of Eq. (24) we have,
5 (brafb@) = BT ) = X2, (Bifia (6) = B () =0,
5, (Bifis) + Ba o)) + 52, (Brafao) + B () = 2Ton(x),

It is obvious that Eq. (26) can be solved as a non-homogeneous Riemann—Hilbert problem. Since the re-
mote loading is constant, from the first term of Eq. (26), one reaches,

Z (b.]cc_fo(O(Z) - B/Jao(z)) =1Cyyz, (27)

o

(26)

where Cj, is the component of a real vector to be determined from remote boundary condition. Note that
in the above equation a subscript o for z is dropped and a replacement should be made once the solution
fo0(z) obtained. From the second term of Eq. (26), a finite solution at the crack ends is

X(2) 2T50(2)

2 (bofale) + badf ale) =5 | Sy g+ CuX @) >

where X (z) = (22 — aZ)I/ * and Cy, is the component of a real vector. The branch cut of X (z) is taken as z
when z — oo, so X*(x) = +i(a* — xz)l/2 for |x| < a. Hence the complex function f,(z,) given by

by X (z.) / Tyo(1)

foolz:) = =5 (t—z,)X (1)

1 .
dr + zb;,l ( C]JX(Z;C) —+ IC()JZM) (29)
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is an analytical function in z, plane (Suo, 1990; Kuang and Ma, 2000), where b;j is the element of [ M]_l. In
Eq. (29), the first term containing an integral at the right-hand side is finite and its derivative is zero when
z, — 00. So invoking the remote field boundary condition, one gets

{ C]J = 220_077
C()KImI:Z“ b‘/:xpab;IH — CIKRG[ZO( bJapab;H = Zic]

In Eq. (30), since X35 = 275, there are eight undetermined constants for seven independent equations. Ting
(1996) proved the following relation

BPB ' = (N[ -N;SL™') —iN;L™", (31)

(30)

where P = diag[p,, p», ps] for anisotropic materials. It is easy to prove that this relation also holds for pi-
ezoelectric materials. Noticing Eq. (9), we have

Im [mepub;,}} =0. (32)

So not losing generality, we set Cyp, = 0. To get the other values of Cy;, a simple numerical procedure is
necessary. For Eq. (29), the single-value condition of displacement is satisfied. Using the second term of Eq.
(24), the unknown function Tyy(x) can be determined from a singular integral equation. From the second
term of Eq. (24), we have

Zau (foI)(x) _fx?)(x)) = Z% (]7:0()6) _7;0(3())- (33)

Substituting Eq. (29) into Eq. (33) gives,

—1
a41b;} — 540517%] / Tjo(t) -1 = -1
Z [ o i (l‘ — x)X*(t) dr + (a4abl, a4abl, )C]J

— 0. (34)

o

We define My, = >, ax,b,}, Hxs = i(Mg; — Mg;). Hgs is a real symmetric matrix (Suo et al., 1992).
Considering Eq. (25), the integral equation for T4 (x) can be given by

Ty (2)

<M4J —MM)CuTEi + (M44 —M44) /
L

With the knowledge of singular integral equations in Muskhelishevili (1953, 1975), we find
My — My,
= Y% = C.X, 36
My — My~ (36)
where C = Hy,25;/Hy. Some singular integrals are listed in the Appendix A for references. With the
availability of Ty(x) and Eq. (29), the zeroth order solution can be obtained for the field both outside and
inside the crack, which was also discussed by Wang and Han (1999) and Gao and Fan (1999)

f@0(2a> = %[UuX(Za) + VocZaL (37)

where

Tyo(x)

1 yoo . _ 1 Hyj \ yoo
U, = bulzy - ba4lC = (ble - ba4l H_L>22j7
V, =1ib,} Cos + b, C.

It is obvious in Eq. (38) that U, depends only on the mechanical load at infinity and is independent of the
lateral stress component 673y, 655 and the electric loading at infinity. Combining the second term of Eq. (24)
with Eq. (37), one gets

(38)
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2Re[g0(x)} = Re[iM4JC0J + M44C]x~ (39)
Hence the zeroth order electric field distribution within the crack on the x-axis is given by

Ey*(x,0) = Hy X5/ (Huer) = DY /e + Hy X5/ Haa, (40)
E"(x,0) = ~ReliMy Cuy + MuC) = EY + Re[ 4 an U],

It can be seen that the zeroth electric field inside the crack is constant which can be regarded as a special
kind of elliptical inhomogeneity whose field distribution is constant when the matrix subjected to constant
loading condition at infinity as indicated by Wang (1992) and Sosa and Khutoryansky (1996). When there
is no mechanical loading at infinity, the electric field inside the crack is (Gao and Fan, 1999)

(IO)C(xv 0) = E?Oa Egmc(xv 0) = D;C/Gf,

which indicates that for the zeroth order solution under the permeable condition the crack cannot disturb
the electric field distribution in the matrix. For simplicity, we demgnate 0, = cosf + p,sinf. Based on the
solution (37), the zeroth order solution for generalized stress Z ( ,0) 1s

Zb./y oa

where (r, 0) is the polar coordinate with its origin located at the right tip and 4, is Kronecker delta. It can
be seen that the remote electric loading comes into influence in the non-singular part in front of the crack
tip. The singular terms of Eq. (41) on the x-axis in front of the right crack tip is

=00 Re +84,C+ O(Vr), (41)

) o va [ Hyg
ZZJsingular(r’ 0) - E |:221 Y H Z :| (42)
By Irwin’s nomenclature (Irwin, 1957), the stress and electric intensity factors (SEIFs) can be written as
K" = Vrass, K = /racy, “3)
= \/n‘aagg, KA(‘O) = —\/naagcj!H4j/H44.

The above result suggests that stress intensity factors (SIFs) only depend on the remote stress loading and
the crack length. The electric intensity factor (EIF) is independent of the remote electric loading and the
dielectric property inside the crack. Pure mechanical loads can also cause EIF. The result is identical with
Wang and Han (1999) and Gao and Fan (1999). With Eq. (37), the generalized displacement is

4
Z ajy, (Ud\/2ar@a + V,a+ er@a)
=1

We reiterate that the zeroth order solution, i.e. the solution for a permeable ideal crack, the remote field
electric load cannot effect the SEIFs. This conclusion applies to various types of small perturbed crack
problems.

0) = Re o(r?). (44)

5. The solution to the order of &'

In this section, the solution procedure is the same as that in Section 4. However, it is quite difficult to get
a solution for a generally perturbed crack face. In the following, even a specific symmetric perturbed crack
configuration causes great difficulty in solving the first order solution. From Eq. (20), for the first order
problem the boundary condition can be recast as,
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2Re Y, byafyi(x) = T (x),

{ﬂhzxmdmnu>$@w%ﬁuﬂ=2Rﬂwamauy+gum el )
where

T}, (x) = ~2Y.(¥)Re| S byupfi (x) | + 280 eImi¥ (x)gh(x) + g1 (x)]- (46)

From the first term of Eq. (45) we have,
S, (boafi @) = Bf () = 52, (B (@) = B () = T () = T (),
52, (Bt 0) + BuaT(6)) 52, (b () + Bl 1 (6)) = T () + T ()

If the materials are the same in Chen and Hsu (1997) and the electric component is neglected, the above
terms of Eq. (47) are identical with the first order controlling Eqgs. (51) and (52) in their paper. Since the
remote boundary condition is not affected by the perturbation of crack faces (see Eq. (22)), f,1(z,) tends to
be zero when z, goes to infinite. Hence, we get

(47)

Zz (bJotfozl (Z) - EJ@(]_rocl( )) = ﬁ fL Mdh (48)
Do (bJJal( )+ baf (2 ) = 2m L z zx+ dt
So, the first order solution can be given by
L1 X(z) (Th(O) +T;(0) 1 / T () = T, (1)
Julz) =3 “’[ 2mi /L (t —z,) X+ (1) o 1=z, d|. (49)

In this paper we focus our attention mainly on the influence of electric field on the SEIFs. In order to
make the solution tractable rather than in a prolix integral form, we confine the perturbed crack face
configuration to a specific case,

Yi(x) = £Y(x) = £(a —x2)3/2/3a2. (50)

Substituting the zeroth order solution into Eq. (46), we write

T/ﬁ(x) + T (x) = 2RG[Z 1b4p5 U, } \/— + 454J€f1m[g1( )]
T ) = T51(0) = —2(Re[ X2, buopila] + daser) ¥ (x).

Invoking the singular integral equations listed in the Appendix A and substituting Eq. (51) into Eq. (49), it
is not difficult to get

fﬂl (Z[f) = bai { a 54J€fX(Zﬂ> l ( Im[gl(t)] dt — éRe Z ibjzxpzx

mii t—zg)X*(1)
i o 3
+ 3 (Re Z byp.Vy| + 6f54JE§0) ) (azX(z,;) — Eazzﬁ + ZZ» — zﬁX(zﬁ)) } (52)

From the second term of Eq. (45) we get

ZaM vl ()) +2<Re

(51)

2
U | X (z4) (Z/fX(Zﬁ) -3 +612)

2Re

Z a4o<poc o

+ E§°>C> Y(x) = 0. (53)
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Considering Eq. (52), the singular integral equation for Im|g;(x)] can be obtained,

Im(g, (1) I 2 1A
A | ————5—dt— == (4, + 4 (5 t4:) =0 >
1/L (t—x)X+(t) 3a2( 2+ 3)x +3 2+ 3 , ( )
where
2H € . :
Ay =—"T2 Ay =iHyRe g:le«Pan :
(55)

A; = i{zRe[M4,] <ef54JE§°>° +Re

Zb]o(panoz‘|> - 2<Re Za4&p1V1 +E;O)C> }

Ay, Ay, A; are constants, which depend on materials properties of the matrix and the dielectric inside the
crack and the remote electro-mechanical loading. The solution to the above singular integral equation is

-1 1 Ay A
Im[g; (x)] :Tc'_lAl [ﬁ(Az + A3)x° —x<7+?>]. (56)
Then substitution of Eq. (56) into Eq. (52) yields
f (Z)fbi_} ,)M l(A +A) Z/33 722,6172 — & é+ﬁ Zp -1
P 2 md; |37 T\ X)) P2 32 )\ X(z)
— lRe Zlb.lvp,cUy X(Z/;) Z/;X(Z,g) - Z%; + a—2
6 - 2

i
+ 8 <Re 20(: bV

Taking the derivative of f(z5) with respect to z; results in

3
+ 6f54‘]E§0>c> (azX(zﬂ) — Eazzﬁ + z;; — ziX(zﬂ)) } (57)

I (a) = ’fo{ - mff;(ﬁ) [(Az a5) <zéx(zﬁ) 2 +22ﬁ) - aZ(/f; +AZ3) (X(z) _zﬁ)]

3 2 2
- 2 Fp o dazp @
2 bl ( X)X (@) 3

;bJapmm]> <zzx(zﬁ) -z +%2) } (58)

S

1
—ERC

— % <€f54JE§0)C + Re

Since, to the author’s knowledge, no similar analytical analysis has been carried out before for the non-ideal
perturbed piezoelectric crack while considering the dielectric inside the crack, we prove the correctness of
the solution by directly substituting Eq. (57) back into the Egs. (20), (22) and (23). We find that the crack
face and remote loading boundary conditions and the single-value condition of the displacement are all
satisfied.

Employing Eq. (57) together with Eq. (3), the first order solution for displacement field can be obtained
as
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1 _ €f541( A3a 2A2 A3 A
u(J>(r,0):2Re§ﬁ:ajﬁbﬁ1§{—n.—ml[—?+(T—i- > @/g—z\/zal"@
~1re > ibgp,U.
6 . Kocpaz o
i 0)c 37"
+ (Re Za:bmpm + erd4xEV ) {— R @ﬁ} } +0(rP). (59)
With Egs. (58) and (11) the first order solution for generalized stress is given by
b.]/;b71
s 0) = VA Re P Re|S ibLp,U, ibg,p,U,
2/ (1, 0) 6V2r zﬁ: \/@—ﬁ Z LaP Z KoDo
+O0(Vr). (60)

2(34J€f 2A2 A3 2 .
_n'—1Al<_ —3Re Z:lbjamea

|:2}"@[g — % \/ 2617‘@/;:|

——Re

 Oa g
H,

44

3 2

The singular term of Eq. (60) on the x-axis in front of the right crack tip is

_ VaRe[Y,ib,pUs]  SusHax vaRe[ S, ibkup,Us]

> r,0) = 61
lemgular( ) 6\/5 H44 6\/5 ( )
Hence the first order perturbation SEIFs are given by
K =YERe[Y ibyp, U],  KS = YERe[Y, ibip, U, 6
K(l) _ @R ib U K(l) _ \/_H4/R ib ( )
3 e[z 1034y 1]7 4 6Has e[Z 1 joPox zx}

Noticing Eq. (32), we can see K is identically vanishing, i.e. the remote electro-mechanical loading cannot
affect the mode I stress intensity to the first order of accuracy. For a transversely isotropic piezoelectric
material with poling axis directed along the x;-axis, we have Hy = Hy3 = 0 (Wang and Han, 1999), and
together with Egs. (32) and (38), one obtains Kil) = 0. So the first order EIF is not influenced by the remote
electro-mechanical loading either for a transversely isotropic piezoelectric material. However, for general
piezoelectric material, the first order EIF may be influenced by the mechanical loading. Eq. (62) also
suggests that the lateral stress o7}, 075 and the electric loading at infinity cannot affect the intensity factors
up to the first order of accuracy. And the stress and electric distributions of the first order solution have the
same singularity but different angular distributions with the zeroth order solution. All intensity factors to
the first order of accuracy are only related to the matrix material properties.

For isotropic materials, Kuang (1979) obtained an exact solution for a lip-flaw crack. When the height of
flaw is small, it can be deduced that oy and 05; cannot influence K to the first order of accuracy. It is the
same for a symmetric and non-symmetric regularly perturbed crack face (Wu, 1982, 1994). In Appendix B,
by neglecting the electric components, Eq. (62) can be used to find the degenerate solution for isotropic
materials, which is the same as Wu (1982). When the perturbation of the crack configuration is symmetric
and materials are the same as Chen and Hsu (1997), the first order SIFs are all vanishing for anisotropic
materials, i.e. o7 cannot influence the first order intensity factors. More efforts are needed to investigate
whether the lateral stress and electric loading can effect the first order intensity factors for non-symmetric
perturbed crack configuration.

Combining the second term of Eq. (45) and Eq. (58), one gets

Relg (x)] = ‘1‘ <I'11 X + Hzx) (63)
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where

2€f54J
37id,

Z ibJapoz Ua

o

1
Hl ZZRG[M‘U][ (A2 +A )—gRe

A 2
4J <Re Z szpo: Ak 61'54JE§0) ) - glm [Xa: a4o<p1Uo¢ ) (64)
26f54_] Az A3 1 .
2 = ZRC[M4J} [ 1A1 <3+ 3 > + 3Re Z:leaPaUa
My (Re > b o B ) + 2 m > aup,U. (65)
2 e prot 045 3 e 4o¢po¢ o

Substituting Eqgs. (56) and (63) into the first term of Eq. (13) and the third term of Eq. (13) respectively, the
structure of electric field of the first order perturbation inside the crack on x-axis can be given by

E(x,0) = ~2Re[g}(x)] =~ (317, 5+ 11,),
E¥(x,0) = 2Im(g) ()] = — b [(o +49) 5 — (%))

The electric distribution of the first order solution is non-homogeneous inside the crack, which is different
from that of the usual permeable ideal crack. The effect of this inhomogeneous electric distribution becomes
apparent when the perturbation to the crack configuration becomes large. From Egs. (12), (17) and (13),
the electric potential jump between the upper and lower face of non-ideal crack can be shown as

(66)

B(x, Yo (x)) — (x, Y- (x)) = —2e(¥s (x) — Y_(x))ES". (67)
It is easy to get
2eDY(Ye (x) — Y_(x)) = er((x, Y- (x)) — p(x, Y2 (x))), (68)

which coincides with the theory of a discontinuous surface of electric potential. Based on this fact, Hao and
Shen (1994) proposed an electric boundary condition as Dy = Dy, Dy (uy —u;) = e(¢~ — ¢™) for the ideal
permeable crack, where u; — u; are the generalized opening displacements between the opposing crack
faces.

6. Energy release rate for the permeable non-ideal crack

The energy release rate precise to the order of ¢ can be obtained by the closure integral

1 l
G=35; | Z-naan (69)

where / is an infinitesimal length and the generalized displacement jump on the crack face can be written
as

A5 (x) = uj () =y (x) = (" — ") + ()" =)+ O(). (70)
Invoking Eqs. (44) and (59) and neglecting the terms with orders higher than +/r, we can get,

AJ() = u.(,OH(x) — =V 2ar { kZ;; j4H4k22k/H44) O} (71)
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> ibup,U, > ibp.U, / H44,0}. (72)

With Egs. (42), (61), (69) and (70), we get the energy release rate to the first order accuracy,

1 2 g
G=7 [Hk" k" — Hiak" + 3 (Hyk" k" — Huk kV)). (73)

_ V2ar
Ajl = u51)+(x) — M‘Sl) (x) = — ijRe — H,-4H4kRe

6

where
k(x) = {K§1)7K1(a)7K3(M)aKA(1x)}7 o= 0> 1

The zeroth order energy release rate is identical with Wang and Han (1999). The above result manifests that
energy release rate does not depend on the electric loading at infinity. This is an unsolved problem (Park
and Sun, 1995; Lynch, 1998). One way to solve this difficulty seems to require a more appropriate model
such as a non-linear piezoelectric constitutive relationship, e.g. the domain switching effect to be considered.

7. Results for impermeable and conducting non-ideal crack

The above sections mainly deal with a permeable non-ideal crack using the exact electric boundary
condition. For the completeness of the paper, the impermeable and conducting electric boundary condi-
tions are also presented. In this section we will give respectively the generalized SIFs and the energy release
rate for the impermeable and conducting non-ideal crack with the crack configuration defined by Eq. (50).

For an impermeable non-ideal crack, the boundary condition (18) will be slightly modified by letting the
right-hand side of the second term of Eq. (18) equal zero and abnegating the third term of Eq. (18). For the
zeroth order solution, the third term of Eq. (19) is waived and the right-hand side of the second term of Eq.
(19) equals zero, and the remote boundary condition remains intact. The solving process becomes much
more simplified since in Eq. (29) the singular integral term containing an unknown function does not exist
any longer. It is easy to show that the generalized SIF can be given by (Suo et al., 1992)

K{O) = \/Tacs;, KZ(O) = \/Tacsy,
K = ymaoy, K\ = \/maDs.

For the first order solution, the term containing ¢; in Eq. (52) is discarded, hence with the availability of Eq.
(52), the first order solution is solved. The generalized stress intensity of the first order is,

(74)

(=B . —ER( 79
KV =YERe[Y ibyp, Uy, K\ =YE=Re[Y, ibup.U,],
where

U, = by 25 o

Similarly to that of the permeable crack, 23; cannot influence Kl(l). We can also obtain the energy release
rate to the first order of accuracy for impermeable non-ideal crack,

1 0), (0 &

G =7 (Huk"K" +%

For a conducting crack, the second terms of Egs. (18)-(20) will be abandoned. We take the refer-

ence electric potential on the crack faces as the zero, so that the right-hand side of the third terms of Eqs.

H,,k}”k}”) . (77)
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(18)—(20) equal zero. Hence an analogy can be made between a conducting crack and an impermeable crack
for finding the intensity factors. We define

N Ay J=1,2,3, ~ bj, J=1,2,3,
aJ = J bJ = J/
* —b4o( J:4, * —dyy J:4,
SO
~ 0); 4 ~
sl = { P =2re| 3 fo;<zz>],
o=1
78
A . L (78)
Z‘IJ(Z) = _E, = —2Re meprm(zot) s
a=1
and
4
(o) = {4} = 2ReD s, (19)
=1

where i, is the total flux of electric displacement normal to a curve. The SEIFs for the zeroth order solution
are (Suo 1993)

50 o 50 o
Kl( ) = VTaocss, Ké ) = Vmaocyy, (80)
R = yraoy, K\ = Jmaky.

and the first order solution can also be derived as follows,

Kl(l) = @Re{zx 1521pot01:| ) KZ(I) = @Re |:Zoc il;lo‘p“ljo‘] ’

A A ] ) ) ) (81)
where
0, = 153 (82)

Is 121(1) equal to zero now like those for permeable and impermeable crack for all piezoelectric materials?
Researches on the properties of the BPB™! may be helpful to answer this question. The energy release rate
for conducting crack is

“ 1/~ ~pyn & A Ay A
G =5 (Auk & +5 kK", (83)

Hy = 1(24: (amzaaj - 5,(“15”)), (84)

=1

which is formally as that of an impermeable crack.

8. Numerical example for the permeable crack boundary condition and discussions

In this section we present numerical form of the present solution. For a transversely isotropic piezo-
electrics with the poling axis directed along the x,-axis, the matrices Q, R, T are:
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Cl1 0 0 0 0 C13 0 €31 Cy4 0 0 0

o 0 Cyq 0 €1s _ | Cua 0 0 0 o 0 C33 0 €133

Q=19 o az= o | R=10 0 0 0o T5l0 0 e o0
0 €15 0 —Ki1 €15 0 0 0 0 €33 0 —K33

It should be noted that all material constants in the Q, R, T matrices are measured in the material coor-
dinate system where the poling direction is parallel to the x3-axis. The material constants for the dielectric
inside the crack and PZT-4 whose poling axis is along the x3-axis are listed as follows (Park and Sun, 1995):

¢ =885x 107" (C°N"'m™?)

Cl1 = 139, C33 = 113, Clp = 778, Cl13 = 7437 Cq4 = 256 (GPa),

e =138, ey =-698, e;5=134(Cm™),

kit = 6.00 x 107, K33 =547 x 107 (C°N"'m™?)
Using a symbolic manipulator such as Mathematica™ or Maple™, it is quite easy to get the SEIFs and
energy release rate from the first term of Eq. (38), Egs. (43), (62) and (73). To the first order of accuracy, we
have K, = KJ«)) + 8[{51) and G = Gﬁ‘” + SGEU and they are,

K, = V/mac3; + O(&*) (Pam'?),

K> = (1 —0.3706¢)y/nacsy + O(&*) (Pam'/?),

85
K; = (1 —0.1822¢)y/macy; + O(&*) (Pam'/?), (85)
Ky = 0.2533 x 107°/nac3s + O(&%) (Cm ™),
G= na[l.lSSoggz + (0.881 — 0.1088¢) 055 + (1.786 — 0.10858)0‘%2] x 107! 4 0(82) (N/m). (86)

When the perturbation is of an order of 102, the influence order by the perturbation is of 10~ for mode 11
and mode III intensity factors and the energy release rate and there is no effect on K| and K;. The per-
turbation effect on the electro-mechanical field inside the matrix is small. However it does not suggest that
the contact permeable electric boundary condition is appropriate to model this non-ideal perturbed crack
configuration due to that the internal electric field in the crack is very large which will be shown latter. Fig.
2 shows the comparison of the critical mechanical loads of the permeable model with the impermeable
model where the half crack length is 1 cm, and the critical extended energy release rate G, = 1.44 N/m
(Fulton and Gao, 1997). It is shown that the critical stress for the permeable mode is invariant and is lower
than the impermeable model.

To study the piezoelectric effects on the SEIFs, we suppose a material with the same elastic and dielectric
material properties but the piezoelectric constants A times those of the PZT-4. By varying the piezoelectric
constant ratio 4, Fig. 3a and b show the variations of SEIFs with respect to A. Since the out-of-plane stress
component o; is independent of the piezoelectric constants for transversely isotropic materials, so is Kj.
The value of Kj is the same as PZT-4 and it will not be given. The zeroth SIFs are the same as those of the
isotropic case, so they will not be plotted either. From Fig. 3a, we can see the first order mode II SIF
decreases as A increases and the decrease effect approaches a constant value as /4 becomes large enough. In
Fig. 3b, the EIF increases almost in a linear manner as / increases, which means the larger the piezoelectric
effect the bigger the EIF. When 4 = 0, i.e. there is no piezoelectric effect, the remote electro-mechanical
loading cannot induce any EIF at all. The first order perturbation effect is also small for the isolating
model, and the first order SEIFs are plotted in Appendix C (Fig. 5a and b).
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Fig. 2. Critical stresses for the isolating and permeable electric boundary condition under different electric loading.

(@) (b)

KV /omm K,x10° /o5ma
-0.34 1

2.5

-0.36 4 1
2.0

-0.38 4 |
15

-0.40
1.04
-0.42 4 0.5 -
\.\. i ./
-0.44 Y Y —————
0 2 4 6 8 10 0 2 4 6 8 10
A A

Fig. 3. (a) The variation of the first order dimensionless mode II SIF Kz(”/ a75+/ma with respect to the piezoelectric constant material
ratio / under the permeable boundary condition and (b) the variation of the dimensionless EIF Ky x 10°/6%5+/ma with respect to the
piezoelectric constant material ratio 2 under the permeable boundary condition.

In practice an application of remote electric displacement loading is usually not achievable, we give the
internal electric field in terms of the remote electro-mechanical loading. Knowing Eq. (37), it is not difficult
to show that

D = 1306 x 10 °E}* +5.25 x 107975 (C/m?),
Dy =1.003 x 10°Ey — 1.783 x 107657 +2.398 x 1079635 (C/m?).

With Egs. (40), (66), (55), (64), (65) and (87), we obtained the zeroth and first order electric field solutions
inside the crack as

(87)



Z. Huang, Z.-B. Kuang | International Journal of Solids and Structures 38 (2001) 7261-7281 7277

EVC = £ —2.140 x 1072635 + 4.021 x 1072635 (V/m),

0) (88)
EV* = 1133.8E5° — 20166 — 1.526655 (V/m),

EN(x,0) = (9.483 x 1072655 — 1.141E7)x%/a® + 0.5704E° — 2.806 x 1072675,
ES(x,0) = (2.928 x 10°E% — 5.208 x 10%0% — 3.906 x 10°035)x*/a (89)
—9.763 x 10°E5® + 1.737 x 10%655 + 1.291 x 10°¢55 (V/m).

It can be seen from Eq. (88) that the first order perturbation for the E, cannot be neglected even for an
order of a 1073 scale perturbation of the crack configuration. Plotted in Fig. 4 are the zeroth order and the
total internal electric field distributions when the matrix is subjected to a mechanical loading ¢55 = 1 Mpa
with different remote electric loading. It can be seen that when the perturbation becomes large, the internal
electric field is significantly magnified near the crack tip. Since the gap of the perturbed crack in the middle
of the crack is larger, from a physical qualitative view, the electric field is difficult to permeate and con-
sequently electric flux lines inside the crack becomes very dense near the crack tip for easier penetration of
the electric field there. For ¢ = 0.03, i.e. the half height of crack is 1/100 of the half length of the crack, the
internal electric field near the crack tip is of order 10* MV/m which is too high to sustain for general di-
electrics. Since the dielectric inside the crack is usually air or silicon oil with a relatively low breakdown
strength, it is very likely that the breakdown of the dielectric within the crack takes place before the matrix
does, so the conducting electric boundary condition near the tip should be considered. Although the present
permeable model does not predict the influence of the remote electric loading on the fracture toughness as
indicated by Park and Sun (1995) and Lynch (1998), it suggests that the electric boundary condition inside
near the crack tip needs further investigation if it breaks down. The present model indicates that a con-
ducting electric boundary condition near the crack tip and an isolating electric boundary condition in the
middle may be a suitable model for the piezoelectric fracture problems. Researches on this crack boundary
condition are underway.

1500 -
. e=0.0038 1——E° E2=-2kV/cm \ B B
o 2=1Mpa fo, o 10000 e=0.03 ! Ea: Eg=2kviom
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Fig. 4. (a) Electric field distribution inside the crack when the perturbation is ¢ = 0.003 and the remote mechanical loading 55 =
1 MPa under the permeable boundary condition and (b) electric field distribution inside the crack when the perturbation is ¢ = 0.03
and the remote mechanical loading ¢35 = 1 MPa under the permeable boundary condition.
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9. Results and conclusions

In this paper an infinite piezoelectric plate with a centered symmetrically perturbed non-ideal crack for
three possible electric boundary conditions are discussed. From this study some results and conclusions are
obtained:

(1) The asymptotic stress and displacement fields to the first order of accuracy near the crack tip are
given. The results show that the first order solutions have the same singularity in r, but different angular
distributions with the zeroth order solutions.

(2) The SEIFs to the first order of accuracy are given. It is found that the remote electric loading has no
contribution to the SEIFs up to the first order of accuracy for the permeable non-ideal crack. But the zeroth
order SEIFs for the impermeable and conducting non-ideal crack are determined independently by the
remote mechanical and electrical loading. For all three electric boundary conditions, the lateral stresses o7y,
095 have no contribution to the SEIFs to the first order of accuracy. For the permeable electric boundary
condition, ¢5; cannot affect the first order mode I SIF. For an asymmetrical non-ideal crack the remote
lateral stress o7}, 075 and electric displacement D{® may have contribution to the SEIFs as can be seen from
Eq. (50), but its closed solution may be very complex, so as a first approximation, we only address a
symmetrically perturbed non-ideal crack. Whether the lateral stresses and electric displacement can come
into effect for the non-symmetric perturbed crack needs further investigation. The electric loading D{° for
the impermeable crack and E5° for the conducting crack cannot affect the zeroth and the first order SEIFs
but the electric loading D3° and Ep® for the impermeable and conducting model respectively have contri-
bution to both the zeroth and the first order SEIFs.

(3) For the permeable electric boundary condition, the quadratic electric field distribution for the first
order solution inside the crack is different from the ideal crack in which the electric field distribution is
homogeneous. The perturbation has a slight effect on the intensity factors and the energy release rate.
However, when the perturbation is even of an order of 1073, its influence on the electric distribution inside
the crack is of the same order as its zeroth order solution. When the perturbation becomes larger, the
electric field concentration effect inside the crack probably causes the dielectric inside the crack to break
down before the matrix does. Hence the permeable electric boundary condition fails and the present model
suggests that a conducting electric boundary condition near the crack tip and an isolating electric in the
middle may be a suitable model for a real crack.
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Appendix A. Some singular definite integrals

Following Muskhelishvili (1953), we list several singular integrals used in the paper.
a : z a 3 o 23 ) 2
S <r—z>5(+<z>d’:m(m_1)v ffa@fz{wdf—m(m—z —7),

" . 3 .
S g dt = -, [ g dt = —ni(? + a%/2),

{ J, 0 de = milx () - 2], { SO, B de = milzX (2) — 22 + a?)2],

[* 0§ = —pix,

—a t—x



Z. Huang, Z.-B. Kuang | International Journal of Solids and Structures 38 (2001) 7261-7281 7279

¢, 0 4 = 72X (2) — 2 + a?2/2)
I, 20 gy — mi(—x + a’x/2)

t—x

Appendix B. The SIFs for isotropic elastic materials using the obtained solution

The zeroth order SIFs are obviously identical to those of isotropic material. To obtain the first the order
SIFs, by neglecting the electric component in the obtained solution (60), the stress distribution directly in
front of the crack tip is

o3r/a
G;i’)singular( ’O) = 62&27 Re

Ting (1996) points out that the left side of Eq. (31) also holds no matter whether the material is degenerate
or not. Since N;, S, L are all real matrixes, Eq. (B.1) can be rewritten as

Z ibfmpxb;kl‘| . (Bl)

o

() _0RVa p
GZ/singular(r7 0) - 6\/5 (N3L )jk' (B2)
The explicit form of matrixes N3 and L for isotropic materials can be found in Ting’s book (1996) as
p 2u(3-+p)
= 0 e 00
N3 = 0 0 0 , L= 0 Z;f(/l;—u) 0l
A2
0 0 —nu 0 u

where A is the Lame constant and the p shear modulus. After a matrix multiplication, one reaches

-2 0 0
NsL'=]0 0 0],
0 0 -1

which is irrespective of the material constants. Hence the first order perturbation SIFs are given by

1 1 \/ta 00 1 \/Tta o
K1(>:07 Ké):_ 3 %12 K3():_ 6 2
which are identical to those of Wu (1982) after sz being corrected in his paper. This confirms the cor-

rectness of the present perturbation solution.

Appendix C. Variations of the first order SEIFs with respect to the piezoelectric constant ratio 4 for the
isolating model

The zeroth SIFs and the first order mode I SIF will not be plotted here for the same reason as stated for
the permeable case. The numerical results find that the first order mode II SIF is the same as that of the
permeable case (Fig. 3a). The remote electro-mechanical loading can influence the EIF to the first order
of accuracy, however the effect of the mechanical loading is small compared to that of the electric loading
(Fig. 5).
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Fig. 5. (a) The variation of the first order dimensionless EIF K| ft” x 10° /a55/ma with respect to the piezoelectric constant material ratio
Aunder the impermeable boundary condition and (b) the variation of the first order dimensionless EIF Kil) x 10° /655/ma with respect
to the piezoelectric constant material ratio 4 under the impermeable boundary condition.
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